
ATMOSPHERIC BOUNDARY-LAYER STRUCTURE OBSERVED

DURING A HAZE EVENT DUE TO FOREST-FIRE SMOKE

MARKUS PAHLOW1,?, JAN KLEISSL1, MARC B. PARLANGE1,
JOHN M. ONDOV2 and DAVID HARRISON2

1Department of Geography and Environmental Engineering, and Center for Environmental and

Applied Fluid Mechanics, Johns Hopkins University, Baltimore, MD 21218, U.S.A.;
2Department of Chemistry and Biochemistry, University of Maryland, College Park,

MD 20742, U.S.A.

(Received in final form 23 March 2004)

Abstract. During a haze event in Baltimore, U.S.A. from July 6 to 8, 2002, smoke from forest
fires in the Québec region (Canada), degraded air quality and impacted upon local climate,

decreasing solar radiation and air temperature. The smoke particles in and above the atmo-
spheric boundary layer (ABL) served as a tracer and provided a unique opportunity to
investigate the ABL structure, especially entrainment. Elastic backscatter lidar measurements

taken during the haze event distinctly reveal the downward sweeps (or wisps) of smoke-laden
air from the free atmosphere into the ABL. Visualisations of mechanisms such as dry con-
vection, the entrainment process, detrainment, coherent entrainment structures, and mixing

inside the ABL, are presented. Thermals overshooting at the ABL top are shown to create
disturbances in the form of gravity waves in the free atmosphere aloft, as evidenced by a
corresponding ripple structure at the bottom of the smoke layer. Lidar data, aerosol ground-

based measurements and supporting meteorological data are used to link free atmosphere,
mixed-layer and ground-level aerosols. During the peak period of the haze event (July 7,
2002), the correlation between time series of elastic backscatter lidar data within the mixed
layer and the scattering coefficient from a nephelometer at ground level was found to be high

(R ¼ 0.96 for z ¼ 324 m, and R ¼ 0.89 for z ¼ 504 m). Ground-level aerosol concentration
was at a maximum about 2 h after the smoke layer intersected with the growing ABL, con-
firming that the wisps do not initially reach the ground.

Keywords: Atmospheric boundary layer, Baltimore PM Supersite, Entrainment, Forest fire,
Haze event, Lidar.

1. Introduction

As with all particulate air pollution, forest fire smoke impacts upon local
visibility and air quality, leading to health risks for the exposed population.
The negative effects are often not restricted to the immediate environment,
however. Hot gases and particles from the fires rise into the atmosphere, often
reaching the free troposphere or stratosphere. Large-scale advective transport
of this gas/particle mixture can then affect air quality in locations remote from

Boundary-Layer Meteorology (2005) 114: 53–70 � Springer 2005

?
Present address: NOAA, Environmental Technology Laboratory, Boulder, CO 80305,

U.S.A. E-mail: markus.pahlow@noaa.gov



the fire itself (e.g., Wotawa and Trainer, 2000; Forster et al., 2001). These
forest fires are occasionally caused by human activity, but most (approxi-
mately 85%) are caused by lightning (Weber and Stocks, 1998). Episodically,
organic carbon (OC) emissions from boreal fires are the dominant source of
regional levels of OC for the eastern and south-eastern United States, a region
with one of the highest anthropogenic emission rates worldwide (Wotawa and
Trainer, 2000). Transport of forest fire plumes originating in Canada towards
the United States is not uncommon (Skinner et al., 1999). Furthermore, the
annual average area of burned forest has more than doubled since the 1970s
(Skinner et al., 2002). By the first week of July 2002, fires in the Québec
region had consumed some 162,000 ha of forest, twice as much as the annual
average.

It is often due to large-scale subsidence that the aerosol from the forest
fires is forced down to low altitudes, after it has been advected horizontally
with the prevailing winds (Iziomon and Lohmann, 2003). If so, the smoke-
laden air from higher altitudes is likely to intersect the atmospheric boundary
layer (ABL), and thereafter a type of ‘fumigation’ process distributes the
gases and aerosols within the turbulent ABL. The haze event in Baltimore
from July 6 to 8, 2002, resulted in the strong impact of combustion products
such as black carbon, organic carbon and PM2.5 (particulate matter with an
aerodynamic diameter £2.5 lm) on a region remote from the fire origin.
Events such as this emphasise the importance of improving our under-
standing of gas and aerosol transport into the ABL from aloft, particularly
because smoke aerosols can affect health, surface temperature (Robock,
1988a, b) and regional climate (Menon et al., 2002).

There is a long observational history of studies that examine ABL struc-
ture and time evolution. Different techniques and a variety of instrumenta-
tion probing the ABL, have been employed in the field (see references in Stull
(1988) and Garratt (1992), and more recently e.g., Angevine et al. (1998a),
Menut et al. (1999) and Yi et al. (2001)). Laboratory experiments have helped
to further our understanding on distinct processes (e.g., Deardorff et al.,
1980; Fedorovich and Thäter, 2002), while large-eddy simulation has also
been used to study specific ABL processes in great detail (e.g., Wyngaard and
Brost, 1984; Sullivan et al., 1998; Albertson and Parlange, 1999).

Here we present results from an experimental study in Baltimore,MD in the
U.S.A. where smoke from forest fires in Québec was entrained into the ABL
from aloft. The goal of this particular investigation is to provide a detailed
description of the boundary-layer structure during the haze event and to link
ABL processes with meteorological conditions and aerosol concentration at
ground level. A comparison is made between the relatively clean atmosphere
on July 6, the heavily polluted conditions on July 7, and the aftermath on July
8, which was characterised by a slow cleansing process. Most of the obser-
vations presented in this paper are from the Johns Hopkins University (JHU)
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lidar supported by ground-based point sensors to characterise aerosol size and
composition, as well as data from a micrometeorological station.

2. Experiment

Particulate matter (PM) Supersites is an ambient monitoring research pro-
gram, funded by the U.S. Environmental Protection Agency (EPA). The
program addresses the scientific uncertainties associated with fine particulate
matter. The programs of the eight PM Supersites, operated during 1999–2003
around the United States, focus on fine particulate characterisation, methods
testing, and support to health effects and exposure studies. Observations taken
in the context of the Supersite project in Baltimore are intended to provide an
extended, highly time, size, and compositionally resolved dataset, including an
indicator of cardiopulmonary response in support of testing hypotheses
relating to source attribution and health effects of PM.

Here we report on observations made at the Ponca St. sampling site in
downtown Baltimore (39�17¢2000 N, 76�33¢1600 W, elevation approximately
40 m above sea level), during a haze event caused by forest fires in Québec,
Canada, from July 6 to 8, 2002. To characterise atmospheric boundary-layer
dynamics, meteorological conditions and atmospheric aerosols, data obtained
with the following instruments are analysed. The JHU elastic backscatter lidar
system (see Pahlow (2002) for a full system description), a micrometeoro-
logical tower, an integrating nephelometer operating at 530 nm (Radiance
Research Model M-903), a tapered element oscillating microbalance (TEOM)
and a semi-continuous elemental and organic carbon (EC/OC) monitor, the
latter three all mounted at a height z ¼ 3.5 m.

The lidar system was operated at 1064 nm in upward pointing mode at
ground level, with a time resolution of 5 s and a range resolution of 3.75 m.
The micrometeorological tower was instrumented with a pyranometer
(z ¼ 11.0 m), a wind vane (z ¼ 10.4 m), two cup anemometers (z ¼ 5.8 and
10.4 m), a hygrometer (z ¼ 4.9 m), a rain gauge (z ¼ 3.0 m) and a pressure
sensor (z ¼ 2.5 m). Micrometeorological and nephelometer data were re-
corded as 5-min averages. The TEOM provided fine particle mass concen-
tration, integrated over 30-min intervals, and the elemental and organic
carbon monitor gave data integrated over 1-h periods. Note that local
standard time (LST) is used throughout this discussion, which corresponds to
eastern daylight time (EDT) for the time period studied here.

3. Canadian Forest Fires: Causes and Consequences

Starting July 2, 2002, some 85 forest fires broke out in two regions south-east
of James Bay, central Québec, 350–650 km north of the U.S. border. A
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combination of prevailing drought conditions in eastern North America and
lightning strikes initiated the fires. Strong winds enhanced fire intensity. The
fires, some of them burning out of control, produced large amounts of
smoke. The smoke was advected southward to the north-eastern U.S.A. and
the Atlantic Ocean as a cyclone intensified over the Canadian Maritimes and
reached parts of the mid-Atlantic region, including Maryland and the city of
Baltimore, by July 6, 2002. The MODIS satellite image (Figure 1) from July
7, 2002, outlines active forest fires and the pathway of the forest-fire smoke.
High pressure subsidence forced the smoke to lower altitudes. Figure 2a
shows the time series of atmospheric pressure recorded at the Baltimore PM
Supersite during July 6–8, 2002. Northerly winds advected the smoke to
Baltimore on July 6 (Figure 2b); weak winds elongated the residence time of
smoke in the ABL (Figure 2c). The smoke signature can clearly be seen in the
time series of solar radiation (SR) (Figure 2d). The maximum SR on cloud-

Figure 1. MODIS satellite image taken on July 7, 2002 at 1035 LST. The red dots represent

active forest fires. The pathway of the smoke plume from Québec to the eastern United States
can clearly be seen. MODIS satellite image courtesy of Land Rapid Response Team, NASA/
GSFC, Greenbelt, MD, U.S.A.
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free July 7, the peak period of the haze event, is 34% lower than that on July
6, where clouds prevailed in the afternoon, and 18% lower than that on July
8, a day with little cloud cover. This, in turn, affects air temperature (Fig-
ure 2e), with a July 7 maximum that is 2.3 �C lower than the maximum on
July 6 and 6.8 �C lower than the maximum on July 8. The mean air tem-
perature on July 7 fell 2.8 �C below the monthly mean air temperature.
Relative humidity (RH) was low during the forest-fire peak event, about 10–
15% below typical July values (Figure 2f ); in the early afternoon of July 8,
the atmospheric pressure fell. This indicated the approach of a cold front,
which, together with a shift in wind direction (Figure 2b), directed the smoke
eastward over the Atlantic, ending the haze event.

4. Visibility and Aerosol Properties

To illustrate how the smoke aerosols influenced various parts of the east
coast of the U.S.A. in particular Baltimore and the vicinity, we present
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Figure 2. (a) Atmospheric pressure p, (b) wind direction a, (c) horizontal wind speed V
measured at two heights, (d) solar radiation SR, (e) air temperature T and (f ) relative humidity
RH at the Ponca St. field site in Baltimore during July 6–8, 2002. Tick marks along the

abscissa axis denote midnight.
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visibility measurements at airports in Figure 3. Lancaster airport [(LNS)
40�7¢1800 N, 76�17¢4500 W] is located 95 km north of Baltimore, Martin State
airport [(MTN) 39�19¢3200 N, 76�24¢4900 W] is 15 km east of Baltimore, and
Baltimore–Washington International airport [(BWI) 39�10¢3100 N, 76�40¢
600 W] is 15 km south of Baltimore. Figure 3 clearly shows that visibility is
decreased strongly by the forest-fire smoke, and that all three locations are
affected, starting in the evening of July 6. The impact of aerosols on visibility
over the 3-day period under consideration is strongest at LNS, with a min-
imum visibility of 1.2 km. At the other two locations the minimum is re-
corded as 1.6 km at MTN and 4.8 km at BWI, respectively. Therefore, the
smoke has been entrained into the ABL over a large area, but the impact
differs geographically. This was confirmed by Sigler et al. (2003), who re-
corded high ground-level pollution concentrations on July 7 near Petersham,
MA (540 km north-east of Baltimore) due to the Canadian forest-fire smoke.
Note that the visibility at LNS begins to increase again on July 8, after the
peak period of the haze event, but falls later on. It remains mostly low at
MTN and BWI (with larger values at BWI) during July 7 and 8, which
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Figure 3. Visibility at three airports (top: LNS, middle: MTN and bottom: BWI) during July
6–8, 2002. The maximum visibility recorded at airports is 16 km. Tick marks along the ab-
scissa axis denote midnight.
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implies that the aerosols were not removed rapidly and that the atmosphere
remained turbid.

In order to characterise ground-level aerosol during the haze event, the
fine particle mass concentration PM2.5, OC, elemental carbon (EC, effectively
equivalent to black carbon), and the scattering coefficient j are shown in
Figure 4. These four variables are chosen for specific reasons: the PM2.5

measurement yields a clear aerosol particle signature, and both OC and EC
are primary forest-fire combustion products, and therefore serve as a tracer
for the smoke aerosols caused by the Canadian forest fires. The nephelometer
data, which yield the scattering coefficient, are related to the lidar measure-
ments, as both use light scattering as the underlying principle. The effect of
smoke particles can clearly be seen in the time series of PM2.5 (Figure 4);
PM2.5 starts to increase in the evening of July 6 (around 1900 LST), indi-
cating the arrival of the forest-fire smoke. The maximum PM2.5 occurs in the
early afternoon (measurement interval 1315–1345 LST) on July 7 with a
value of 198.8 lg m)3, and remains elevated after the maximum value (mean
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Figure 4. Fine particle (<2.5 lm) mass concentration PM2.5, organic carbon OC, elemental
carbon EC and scattering coefficient j for the time period July 6–8, 2002. Tick marks along the
abscissa axis denote midnight.
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concentration on July 8, 56.0 lg m)3), compared to the concentration before
the haze event (mean concentration on July 6, 29.1 lg m)3). The scattering
coefficient and organic carbon are strongly correlated with PM2.5, with
temporally coinciding maxima (OCmax ¼ 69.4 lgC m)3, jmax ¼ 5.41 ·
10)4 m)1), whereas EC increases at times when PM2.5 and OC measurements
remain comparably low. This is due to the fact that EC is only a signature for
certain forest-fire smoke particles. Depending on the type of fire (e.g. fast
flaming, smoldering, dry, green, wet) the EC fraction may range from 10% to
almost zero.

5. Lidar Observations of the ABL Structure

Time series of boundary-layer height are a good indicator of the strength of
convective activity in the ABL, because the surface heat fluxes drive the ABL
diurnally. Figure 5 presents the time series of ABL height for July 6–8, 2002,
determined from lidar data. The maximum boundary-layer height for July 6
(zi,max ¼ 1723 m) and July 8 (zi,max ¼ 1601 m) strongly exceeded the maxi-
mum ABL height of the peak day of the haze event July 7 (zi,max ¼ 1164 m).
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Figure 5. ABL height zi, as determined from lidar data using a gradient-contour method, for

July 6–8, 2002 (July 6: left panel; July 7: middle panel; July 8: right panel). Error bars denote
one standard deviation from the mean for each respective time interval.
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The forest fire smoke reduced solar heating of the ground (see Figure 2d),
which in turn reduced the surface heat fluxes, thus causing reduced convec-
tive activity and a lower ABL height.

The smoke particles served as flow tracers and provided an excellent vi-
sualisation of boundary-layer processes. The first lidar backscatter data time
segment (Figure 6 top panel) from 0847 to 1503 LST shows the coherent
layer of forest-fire smoke that is forced down to lower altitudes due to
subsidence over the area. Note the coherence of the smoke plume, ranging
initially in height from about 1500 to 2250 m. The shallow (zi � 500 m) early
morning boundary layer is aerosol laden due to rush-hour traffic. Starting at
around 0950 LST, the growth of the convective boundary layer (CBL) can
clearly be seen, whereas the smoke layer continues to descend to lower alti-
tudes (until around 1100 LST). Note that thermals, overshooting at the
boundary-layer top, create a disturbance in the stably stratified layer aloft,
which propagates up to the bottom of the smoke layer, manifest in coinciding
upward and downward movements of air. The dynamic interaction of the
CBL with the free troposphere has been studied previously (e.g., Gossard and
Richter, 1970; Metcalf, 1975; Stull, 1976a, b). Recently, Fochesatto et al.
(2001), using ground-based lidar, observed dynamic coupling between the
growing convective boundary layer and the residual layer. They found that
the top of the residual layer started to fluctuate shortly after the CBL began
to develop, indicating gravity waves that were excited by overshooting
thermals at the top of the CBL.

Figure 7. Lidar time series of relative aerosol backscatter from 1008 to 1053 LST. The ABL
top and smoke-layer bottom are outlined by the solid and dashed lines, respectively.

MARKUS PAHLOW ET AL.62



Using smoke as a ‘tracer’, we investigate the interaction between the CBL
and the overlying air on July 7. In Figure 7 the lidar time series shows the
growth of the CBL and the descending smoke layer aloft between 1008 and
1053 LST. From visual inspection, the growing CBL and the overlying
smoke layer appear to be coupled. Domes forming on top of the CBL
correspond to the ripple structure at the bottom of the smoke layer. The top
of the growing convective boundary layer and the bottom of the forest-fire
smoke layer are determined from the lidar backscatter signal using a com-
bined gradient-contour method (solid and dashed lines in Figure 7). To
correlate the two time series we subtract their trends and correlate the
fluctuations. The correlation coefficient for the time series of fluctuations of
ABL top and smoke-layer bottom is largest for a time lag of 25 s, with
R ¼ 0.48 (for zero time lag: R ¼ 0.37). Since the vertical separation between
ABL top and smoke-layer bottom ranges from approximately 300 to 60 m,
the correlation between the two time series is due to wave motion and not
due to coherent turbulent structures. This maximum correlation for a time
lag of 25 s is indicative of the group speed of gravity waves excited by
thermals at the top of the ABL. From the mean distance between ABL top
and smoke-layer bottom of about 200 m, a mean group speed cg ¼ (200 m)/
(25 s) ¼ 8 m s)1 is determined.

Shortly after 1100 LST the smoke layer and the CBL make contact. The
smoke layer atop the CBL serves as a tracer and clearly outlines the thermals
overshooting at the boundary-layer top, and the wisps sinking back into the
CBL. This interplay is known as penetrative convection (Scorer, 1957;
Deardorff et al., 1969; Stull, 1976a). Under regular atmospheric conditions
penetrative convection would result in cleansing of the CBL, since down-
drafts would carry clean free atmospheric air from aloft into the CBL. From
1140 LST onwards the smoke layer is embedded and confined in the
entrainment zone (EZ) due to thermals impinging from the bottom, and due
to the stable free atmosphere (FA) above (‘lid effect’). Entrainment charac-
teristics of penetrative convection such as dome (due to thermal updrafts,
Stull, 1976a) and wisp (downdrafts termed ‘wisps’ by Deardorff et al., 1969)
structures become clearly identifiable throughout the lidar time series. At
around 1230 LST, large amounts of aerosol particles are being ‘washed
downward’ through the mixed layer to the ground by means of wisps, about
50 min after the smoke layer becomes embedded in the entrainment zone.
Also, from about 1200 LST onward, more aerosols are transported upward
from the surface, since the entrainment of smoke has increased the ground-
level aerosol concentration by that time (see Figure 4). The downward
transport intensifies at around 1315 LST and thereafter. Vigorous downward
mixing in either coherent ‘sheets’ of aerosols or in broad ‘curtains’ of aerosols
continues throughout this time period to further degrade air quality within
the mixed layer. Upward and downward transport is almost indiscernible at
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this stage. Another process that can be observed is detrainment, the reverse
of entrainment (Deardorff et al., 1980). Small pockets of aerosol-laden air
detrain from the boundary layer, which can be seen clearly at around 1345
LST. This occurs when overshooting thermals do not sink back into the
ABL, but break away and remain in the free atmosphere. Furthermore,
detrainment evolves into a process that will be termed ‘detachment’. A
coherent layer of aerosol-laden air separates from the boundary layer at
around 1415 LST, which in turn leads to a decrease of the boundary-layer
height. Relatively clear air separates the CBL from the smoke layer aloft.
This ABL debris might be re-entrained thereafter or remain in the residual
layer or free atmosphere until it becomes re-entrained the following day.
Downward mixing of aerosols continues throughout the afternoon, as can be
seen in the lidar backscatter data time series (Figure 6, bottom panel) from
1618 to 2035 LST. Interestingly, the smoke layer that was confined in the EZ
begins to detach after 1830 LST and the negative impact on air quality
lessens. Along with the decreasing convective activity during the evening
period, penetrative convection ceases. In addition, the inversion at the ABL
top weakens during the transition from daytime, through evening, to
nighttime. Hence the smoke layer, formerly trapped in the entrainment zone,
disconnects and is advected by the large-scale outer flow (see Figure 6,
bottom panel). In the process, the layer spreads out and the smoke aerosol
remains as debris in the residual layer, up to an altitude of about 2400 m.
However, a coherent layer is lifted off by large-scale motion (near 1930 LST),
undergoing upward transport and at the same time the stable nocturnal
boundary layer starts to form.

6. Linking ABL and Ground-Level Observations

Due to the zone of incomplete overlap between the laser beam and the field of
view of the telescope, a vertically staring lidar can provide information up-
wards from a certain level only (here zmin »300 m). We investigate the pos-
sible link between ABL entrainment and mixing, as observed with the lidar,
to in situ ground-level measurements. Of particular importance is the com-
parison between remotely sensed lidar data in the mixed layer and data
obtained from in situ measurements in the atmospheric surface layer. Since
the time series of the scattering coefficient on July 7 is representative of the
temporal evolution of PM2.5, OC, and also of EC during the peak period (see
Figure 4), and since j is available at higher temporal resolution, we use the
nephelometer data to compare with relative aerosol backscatter data from
the lidar. The lidar and nephelometer serve as a means a to determine the
upward (through thermals) and downward (through wisps) transport of
aerosols through the surface layer and mixed layer. Concentrations in both
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time series are related to the occurrence of these events. Mixing due to tur-
bulence of smaller scales also contributes to a vertical homogenization of the
flow, but the mixing due to large scales is dominant in convective conditions.
Thorough mixing of smoke aerosols in the whole ABL will increase the lidar
backscatter signal throughout, as well as the scattering coefficient of the
nephelometer on the ground. Plots of lidar transects (5-min moving average)
at several heights, along with the nephelometer data, are presented in Fig-
ure 8. For ready comparison, the vertical axis is normalised by the respective
maximum value of each measurement. The nephelometer data and lidar data
at a certain level correspond well for distinct, yet certainly not all, time
periods. The lidar signal at z ¼ 1246 m always samples the free atmosphere,
since the maximum ABL height is 1164 m. In the morning the lidar signal at
z ¼ 1246 m samples the smoke layer descent above the ABL and hence is
greater than the nephelometer signal. In the afternoon the smoke layer is
embedded in the ABL such that the lidar at z ¼ 1246 m samples free
atmospheric air with smaller smoke concentrations than at the ground. When
levels within the ABL are chosen, the correlations are larger and increase
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with proximity to the ground. The increase in correlation can clearly be seen
from Figure 8 for a few selected representative levels. The intermediate
height, z ¼ 875 m, alternately lies above and below zi, corresponding to
varying agreement with the nephelometer. Between 1800 and 1900 LST the
smoke layer lifts, hence the aerosol concentration increases in this height
region, and therefore the lower correlation with ground-level observations.
The height z ¼ 324 m lies always within the ABL during the time period
under consideration and exhibits a strong correlation between lidar and
nephelometer (R ¼ 0.96). The data correlate best for zero time lag. Table I
summarises the comparison between lidar and nephelometer in the form of a
correlation matrix. The high correlation coefficient R between the lidar at
324 m and nephelometer suggests strong coupling of the lower mixed layer
and near surface air pollution levels for time scales >5 min. Measurements at
levels that were always below zi (z ¼ 324 and 504 m) show the highest cor-
relation with each other and with ground-level observations.

Two interesting events, as observed with lidar, were corroborated by
nephelometer data. From 0915 to 0950 LST a strong decrease in the lidar
signal was recorded at low altitudes (see Figure 6, top panel). This corre-
sponds to a strong decrease in the scattering coefficient measured at the
ground (see Figure 8). A possible cause is the reduction of ambient aerosol
from car exhaust after the morning rush-hour traffic. Secondly, the detach-
ment of a coherent smoke layer from the ABL, starting at about 1400 LST
(see Figure 6, top panel) corresponds to the onset of the decrease in the
scattering coefficient in the early afternoon, as obtained from the nephe-
lometer. Hence, this removal of aerosol through the top of the ABL affected
the aerosol concentration throughout the boundary layer.

TABLE I
Matrix of correlation coefficient R for lidar transects at several levels (normalised relative

aerosol backscatter) and nephelometer ‘neph’ (normalised scattering coefficient, measured at
ground level).

324 m 504 m 684 m 875 m 1066 m 1246 m Neph

324 m 1.00 0.94 0.82 0.72 0.51 0.12 0.96

504 m 0.94 1.00 0.88 0.72 0.44 0.09 0.89

684 m 0.82 0.88 1.00 0.74 0.35 0.004 0.81

875 m 0.72 0.72 0.74 1.00 0.63 0.08 0.75

1066 m 0.51 0.44 0.35 0.63 1.00 0.39 0.56

1246 m 0.12 0.09 0.004 0.08 0.39 1.00 0.12

Neph 0.96 0.89 0.81 0.75 0.56 0.12 1.00

Levels z = 324 and 504 m were always below zi, z = 684, 875 and 1066 m were alternating
above and below zi and z = 1246 m was always above zi.
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7. Discussion

It has been shown how forest-fire smoke can, under particular, yet not
unusual, synoptic atmospheric conditions, substantially affect air quality and
regional climate in regions remote from the fire origin. In the Québec forest-
fire event of July 7, 2002, in Baltimore, the interplay of smoke that is ad-
vected by synoptic winds, large-scale subsidence and boundary-layer
entrainment is responsible for high particle concentrations throughout the
ABL, down to the ground. The smoke event presented a unique opportunity
to study ABL characteristics using lidar.

Reflection and absorption of sunlight by a dense elevated smoke layer
acted to lower daytime air temperature and possibly strengthen the ABL
inversion. This contrasts with the regular case, where direct heating by
shortwave radiation absorbed by aerosols within the boundary layer is found
to be an important component of the boundary-layer heat budget (Angevine
et al., 1998b). However, if larger amounts of aerosol are present in the
atmosphere, the opposite can occur, as was shown here and elsewhere
(Robock, 1988a, b; Menon et al., 2002), with implications for regional scale
climate.

A prime purpose of our study was to investigate the structure of the
atmospheric boundary layer in great detail, using the smoke particles as
tracers. Several mechanisms were observed, such as dry convection, mixing
inside the ABL, entrainment, and detrainment. We would like to note that
detrainment, as observed in our study, differs greatly from detrainment ob-
served for slope flows under stable atmospheric conditions (Monti et al.,
2002), or in laboratory experiments (Fernando et al., 2001). In those cases,
fluid can peel off as it flows upslope or downslope. As was shown by the lidar
data time series taken during the haze event, pockets of boundary-layer air
can overshoot the top of the ABL and break away under convective condi-
tions.

Internal gravity waves can be excited in the non-turbulent region above
the ABL by penetrative convection (Stull, 1976b). Our analysis (see Figure 7)
confirms that disturbances, caused by overshooting thermals, can propagate
vertically upward, away from the ABL.

There are some similarities between a cloud-topped boundary layer and
the ABL on July 7, 2002, which was initially topped by a smoke layer. A
smoke-topped ABL shares with the stratocumulus-topped ABL the essential
features of turbulence and entrainment driven by radiative cooling (Moeng
et al., 1999). The forest-fire smoke layer caused strong absorption of solar
shortwave radiation due to black carbon (‘soot’), which is re-emitted as
longwave radiation, leading to radiative cooling. Shortwave radiation can
also be simply reflected back to space (e.g., by non-absorbing particles such
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as organic carbon). In a large-eddy simulation study of the ABL driven by
smoke-cloud-top radiative cooling only (hence not fully comparable to the
convectively driven ABL here) by Moeng et al. (1999), it was found that the
entrainment rate depends substantially on the jump in longwave radiative
flux above the entrainment buoyancy flux level. Furthermore, the radiative
flux divergence was found to exist solely within the smoke region, which cools
the smoke-cloud layer and thus enhances the local inversion strength.
Noteworthy here is the study by Robock (1988b) who found that forest-fire
smoke trapped in a valley strengthened the inversion by preventing surface
warming due to solar radiation, thereby enhancing the smoke trapping and
surface cooling in a positive feedback loop. These studies explain, in part, the
strong lid effect of the smoke layer found here. In addition, they provide a
physical explanation for the tremendously energetic wisps that carry large
amounts of aerosol downward. These wisps originate within the entrainment
zone, perhaps cooled due to radiative effects, and hence the EZ air mass
becomes negatively buoyant, promoting energetic downward transport.
Furthermore, note that the process of detachment might have been caused in
part by differential absorption of sunlight. In an analogy to studies on
the stratocumulus-topped ABL (e.g., Slingo et al., 1982; Driedonks and
Duynkerke, 1989; Moeng, 1998) it appears that shortwave radiative heating
(positive buoyant forcing) and longwave cooling (negative buoyant forcing)
destabilised the smoke layer and led to detachment.

The smoke layer was initially above the ABL and intersected with the
growing ABL due to subsidence. Since the process can be viewed as a type of
fumigation, it is reasonable to compare the results with the study by Dear-
dorff and Willis (1982). They found that the ground-level concentration was
maximal 1–2 h after the fumigation process began. In the current study the
start of fumigation is around 1140 LST, and the maximum scattering coef-
ficient from the nephelometer was measured during the sampling interval
1330–1335 LST. Thus, a time lag of about 2 h is observed, which compares
well with the result of Deardorff and Willis. Furthermore, the lidar visuali-
sations show that wisps do not initially reach the ground; hence the fumigant
is intercepted spottily by the mixed layer, producing the time lag, in agree-
ment with Deardorff and Willis.
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